

Course Work Upgrading Water or Wastewater Treatment Plants

Assignment

- You can choose between two case studies for your Course Work:
 - Upgrading of the drinking water treatment plant in the city of xxxxxxx, in country yyyy <u>OR</u>
 - -Upgrading of the wastewater treatment plant in the city of xxxxxxx, in country yyyy.

Please choose a treatment plant from your home city or any other city in your country. Please make sure that no one else is doing the same case study.

Evaluation criteria

Understanding of the problem

Demonstrate why it is necessary to upgrade and what could be the possible reasons for the needs or existing problems

- Demonstration of knowledge on possible solutions Several alternatives, flow sheets, advantages and disadvantages of each system
- Demonstration of detailed designing for at least 2 solutions and selection of one with justification

Show basic calculations or dimensioning; cost comparisons; flow sheets and any other details; list of monitoring instruments and with indications of where to place them

Marking

Reasons for problems & solutions/understanding of the problem	10%
Which unit processes or treatment concepts can solve the existing	10%
problems?	
Comparison of unit processes/treatment concepts with adv & disadv of unit	15%
processes - (why you will include them in the 2 choices)	
Flowsheets of complete processes of two alternatives	10%
Disadv & adv of the two flowsheets and justification for the priority/selection	15%
Economy/size comparison/justification	10%
Monitoring: Instrumentation & flow sheet	10%
Special issues (odour, taste)	10%
Report format: Design, format, references, etc	10%

Course work content development

Common upgrading needs:

- Capacity increase
 - -Population (or other users) increase
 - -Need for expanding
 - -outdated DWTP/WWTP
- New or increased treatment efficiencies

 New discharge licences /law & regulations
 Reduction of non-compliance events
- Improved economy and management
 - -Reduction of physical footprint
 - -Energy and resources recovery/reuse
 - -Increased and improved automation

Capacity increase

- Removal of particles
 - Most pollutants have a significant fraction as particles and colloids
 - -Adding a pre-sedimentation tank will often help
 - Particles can be removed by high efficiency screens (0.1-0.5 mm opening), Salsnes, etc
 - -Colloids can be removed by coagulation
 - Replace conventional sedimentation tanks with ballasted systems (Actiflo etc)
 - Replacing Activated sludge systems with biofilm systems

Capacity increase with coagulation

Increase treatment efficiencies

- How to increase
 - -Colour removal in a DWTP?
 - -P removal in a conventional biological WWTP?
 - -N removal in a conventional chemical WWTP?
 - -SS removal?

Process alternatives

- 1. Mechanical treatment
- 2. Chemical treatment:
 - a) Chemical enhanced mechanical treatment, high load
 - b) Chemical treatment, low load, called primary precipitation
- 3. Biological treatment:
 - a) High load activated sludge method (0,5 kg BOD₅/kg SS*d)
 - b) Normal load activated sludge method (0,2 kg BOD₅/kg SS*d)
- 4. Biological/Chemical treatment:
 - a) Simultaneous precipitation (by normal load activated sludge)
 - b) Pre-precipitation (pre-precipitation followed by normal load activated sludge)
- 5. Nitrogen removal, biological/chemical (by pre-denitrification, simultaneous precipitation)

TABLE 5. WASTEWATER SPECIFIC LOAD AND COMPOSITION USED FOR COST CALCULATIONS

	Specific load	Wastewater composition, g/m ³					
	g/(pe*d)	at 250 l/pe*d	at 400 l/pe*d				
BOD ₅	62.5	250	150				
SS	62.5	250	150				
Tot P	3.0	12	7.5				
Tot N	12.0	48	30				

.

Treatment efficiencies

	BOD ₅		SS		Tot. P		Tot. N		Sludge production	
Process	%	mg /l	%	mg/l	%	mg/ I	%	mg/l	g DS/m ³	%
Raw WW	0	250	0	250	0	12	0	48	-	-
Mechanical	(30)	175	60	100	15	10	15	40	125	4
Chemical:										
a) High load	58	125	80	50	70	3.6	25	36	250	3
b) Low load	70	75	90	25	90	1.2	30	34	350	3
Biological:										
a) High load	70	75	80	50	30	8.4	25	36	185	2
b) Normal load	-90	20	90	25	30	8.4	30	34	205	2
Biological/chemical										
a) Simultaneous	~90	20	~90	20	~90	1,0	35	31	250	2
precipitation										
b) Pre-precipitation	~95	10	~95	15	~95	0,5	35	31	380	2
Biological/chemical, N-	~95	10	~97	10	~90	1,0	70	15	275	1,5
rem.: Predenitrification,										
simultaneous prec.										

Reduction of physical footprint

- Introduce a chemical stage;
- AS-BF;
- flotation instead of sedimentation;
- filtration instead of Sed/Flotation,
- adding flocculants,
- adding a high efficiency screens

Automatic surveillance and process control

- Continuous and more efficient/accurate surveillance

 Connected to alarm systems
 More process data for optimisation
- Increased automation
 - -Less dependency on operational personal
 - -Reduced need for work force
 - -Better control in extreme events